Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 912: 169137, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38070553

RESUMO

Invasive alien species are currently considered as one of the dominant drivers of global environmental change. Till now, the majority of studies have focused on single or a few traits of alien species that facilitate their invasion. Also inclusion of all the traits which determine the transition of aliens along the different stages of invasion continuum (casual, naturalised and invasive) has remained largely overlooked. In this study, we collected a comprehensive trait dataset on 144 alien plant species of Kashmir Himalaya - a global biodiversity hotspot region. To test which traits of alien species, individually or in combination along with anthropogenic factors, determine their transition along the invasion continuum, we employed chi-square tests, boosted regression trees and phylogenetic methods. We found the perennial life span, longer residence time, greater number of introduced regions, and better seed dispersal mechanism were critical in determining the transition from casual to naturalised. The herbaceous growth form, therophyte Raunkiaer life-form, annual life span, achene fruit, longer residence time and broader introduced range were the species' traits determining transition from naturalised to invasive. Aliens introduced as ornamentals have more propensity to become naturalised; whereas aliens introduced unintentionally show overrepresentation at the invasive stage. Phylogeny alone showed mixed results indicating both clustering and dispersion; however, in combination with other traits, it plays a significant role in determining the stage of invasion. Overall, our study disentangles the individual and interactive roles of multiple traits that determine the transition of alien species' along the invasion continuum. Further, we foresee the potential applicability of our findings in designing robust invasion risk analysis protocols and stage-specific invasion management strategies in this Himalayan region, with learnings for elsewhere in the world.


Assuntos
Biodiversidade , Espécies Introduzidas , Filogenia , Plantas , Sementes , Ecossistema
2.
Environ Monit Assess ; 196(1): 36, 2023 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-38093150

RESUMO

Climate warming-driven temporal shifts in phenology are widely recognised as the foremost footprint of global environmental change. In this regard, concerted research efforts are being made worldwide to monitor and assess the plant phenological responses to climate warming across species, ecosystems and seasons. Here, we present a global synthesis of the recent scientific literature to assess the progress made in this area of research. To achieve this, we conducted a systematic review by following PRISMA protocol, which involved rigorous screening of 9476 studies on the topic and finally selected 215 studies for data extraction. The results revealed that woody species, natural ecosystems and plant phenological responses in spring season have been predominantly studied, with the herbaceous species, agricultural ecosystems and other seasons grossly understudied. Majority of the studies reported phenological advancement (i.e., preponement) in spring, followed by also advancement in summer but delay in autumn. Methodology-wise, nearly two -third of the studies have employed direct observational approach, followed by herbarium-based and experimental approaches, with the latter covering least temporal depth. We found a steady increase in research on the topic over the last decade with a sharp increase since 2014. The global country-wide scientific output map highlights the huge geographical gaps in this area of research, particularly in the biodiversity-rich tropical regions of the developing world. Based on the findings of this global synthesis, we identify the current knowledge gaps and suggest future directions for this emerging area of research in an increasingly warming world.


Assuntos
Mudança Climática , Ecossistema , Temperatura , Monitoramento Ambiental , Clima , Estações do Ano , Plantas
3.
Sci Total Environ ; 884: 163856, 2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-37142012

RESUMO

Biotic homogenization by invasive alien species is one of the dominant drivers of global environmental change. However, little is known about the patterns of biotic homogenization in global biodiversity hotspots. Here, we fill this knowledge gap by studying the patterns of biotic homogenization and associated geographic and climatic correlates in Indian Himalayan Region (IHR). For this, we use a novel biodiversity database comprising 10,685 native and 771 alien plant species across 12 provinces of the IHR. The database was assembled by screening 295 and 141 studies published from 1934 to 2022 for natives and aliens, respectively. Our results revealed that each native species on average was distributed among 2.8 provinces, whereas the alien species in 3.6 provinces, thereby indicating wider distribution range of alien species in the IHR. The Jaccard's similarity index between the provinces was higher for alien species (mean = 0.29) as compared to natives (mean = 0.16). Addition of alien species pool has homogenized most of the provincial pairwise floras (89.4 %) across the IHR, with greater dissimilarity in their native floras. Our results revealed that the alien species have strong homogenization effect on the provincial floras, regardless of their differences in geographic and climatic distances. The biogeographic patterns of alien and native species richness in the IHR were better explained by a different set of climatic variables, the former by precipitation of driest month and the latter by annual mean temperature. Our study contributes to better understanding of the patterns of biotic homogenization in the IHR and its geographic and climatic correlates. Looking ahead, in an era of Anthropocene, we discuss the wide implications of our findings in guiding biodiversity conservation and ecosystem restoration in global hotspot regions.


Assuntos
Ecossistema , Espécies Introduzidas , Biodiversidade , Temperatura , Índia
4.
Int J Biometeorol ; 66(9): 1771-1785, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35759146

RESUMO

Experimental evidences in support of climate warming-driven phenological shifts are still scarce, particularly from the developing world. Here, we investigated the effect of experimental warming on flowering phenology of selected woody plants in Kashmir Himalaya. We selected the twigs of four congeneric pairs of temperate woody species (Prunus, Populus, Ulmus, Viburnum)-typical spring-flowering plants in the region. Using randomised block design, we monitored these winter dormant twigs in controlled growth chambers to study the effect of different temperature regimes (9, 17, 20 and 23 °C) and species identity on the patterns of phenological shifts. We observed a significant phenological shift in all the species showing preponement in the first flower out and senescence phases ranging from 0.56 to 3.0 and 0.77 to 4.04 days per degree increase in temperature, respectively. The duration of flowering phase in all the species showed a corresponding decrease along the gradient of increasing temperature, which was more driven by preponement of the flower senescence than the start of flowering. The patterns of phenological shifts were highly species-specific, and the magnitude of these shifts significantly varied in all the four pairs of congeneric species despite their phylogenetic similarity. Our study provides experimental support to the previous long-term observation and herbarium-based studies showing that the patterns of phenological shifts in response to global climate warming are likely to vary between species, even those belonging to same evolutionary stock. Our findings highlight that a one-size-fits-all strategy to manage the likely impacts of climate warming-induced phenological shifts will seldom succeed, and should instead be designed for the specific phenological responses of species and regions.


Assuntos
Mudança Climática , Clima , Flores , Filogenia , Plantas , Estações do Ano , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...